Transcendental Obstructions to Weak Approximation on General K3 Surfaces

نویسنده

  • PATRICK VARILLY
چکیده

We construct an explicit K3 surface over the field of rational numbers that has geometric Picard rank one, and for which there is a transcendental Brauer-Manin obstruction to weak approximation. To do so, we exploit the relationship between polarized K3 surfaces endowed with particular kinds of Brauer classes and cubic fourfolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brauer groups on K 3 surfaces and arithmetic applications

For a prime p, we study subgroups of order p of the Brauer group Br(S) of a general complex polarized K3 surface of degree 2d, generalizing earlier work of van Geemen. These groups correspond to sublattices of index p of the transcendental lattice TS of S; we classify these lattices up to isomorphism using Nikulin’s discriminant form technique. We then study geometric realizations of p-torsion ...

متن کامل

2 2 A pr 2 01 4 Brauer groups on K 3 surfaces and arithmetic applications ∗

For a prime p, we study subgroups of order p of the Brauer group Br(S) of a general complex polarized K3 surface of degree 2d, generalizing earlier work of van Geemen. These groups correspond to sublattices of index p of the transcendental lattice TS of S; we classify these lattices up to isomorphism using Nikulin’s discriminant form technique. We then study geometric realizations of p-torsion ...

متن کامل

Transcendental Lattices of Some K3-surfaces

In a previous paper, [S2], we described six families of K3-surfaces with Picardnumber 19, and we identified surfaces with Picard-number 20. In these notes we classify some of the surfaces by computing their transcendental lattices. Moreover we show that the surfaces with Picard-number 19 are birational to a Kummer surface which is the quotient of a non-product type abelian surface by an involut...

متن کامل

2 Federica Galluzzi and Giuseppe

In this paper we show that there is a correspondence between some K3 surfaces with non-isometric transcendental lattices constructed as a twist of the transcendental lattice of the Jacobian of a generic genus 2 curve. Moreover, we show the existence of a correspondence between a general K3 surface with ρ = 17 and a Kummer surface having transcendental lattices Q-Hodge isomorphic.

متن کامل

Normal Functions, Picard-fuchs Equations, and Elliptic Fibrations on K3 Surfaces

Using Gauss-Manin derivatives of generalized normal functions, we arrive at results on the non-triviality of the transcendental regulator for Km of a very general projective algebraic manifold. Our strongest results are for the transcendental regulator for K1 of a very general K3 surface and its self-product. We also construct an explicit family of K1 cycles on H ⊕ E8 ⊕ E8-polarized K3 surfaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011